"Anxiolytic Effects of L-Theanine: A Component of Green Tea, when Combined with Midazolam, in the Male Sprague-Dawley Rat"

Dr. Thomas E. Ceremuga, CRNA, PhD
LTC Traci Heese, CRNA, MSN
MAJ Cheryl Love, CRNA, MSN
MAJ Ron Milam, CRNA, MSN
MAJ Jack Jenkinson RN, MSN
MAJ Lillian Perkins, CRNA, MSN
CPT Cynthia Adams, CRNA, MSN

www.vetmed.ucdavis.edu/Animal_Alternatives/LabHAI.html

US Army Graduate Program in Anesthesia Nursing/Northeastern University
Problem Statement

- It is not known if L-theanine, a component of green tea, has an anxiolytic effect via activation of benzodiazepine site on the GABA$_A$ receptor.
Significance

- Anxiety Disorders are prevalent in American culture, affecting approximately 40 million adults (16%) age 18-54. (surggeneral.gov, 2006)
- A recent review of the literature indicates as many as 77% of patients do not disclose use of alternative medicines; this has prompted a JCAHO mandate that all health care providers screen for use of alternative medications. (Complementary Therapies in Medicine, 2006)
- The incidence of herbal use in preoperative patients approaches 22%, compared to 18% of the general population. (Anesthesiology, 2000)
- Herbal products can interact with frequently used medications—including anesthesia—and may cause serious unforeseen consequences or complications. (JAMA, 2001)
- Few studies address the therapeutic effects of L-theanine.
Research Questions

- Does L-theanine (a component of green tea) have anxiolytic effects in the laboratory rat?
- Is the anxiolytic effect of L-theanine a result of modulation of the benzodiazepine site on the GABA_A receptor?
Theoretical Framework

Anxiety

Stress

↑ Serum Corticosterone

↑ Catecholamine

Behavioral Changes (EPM)
Theoretical Framework

Anxiety

Decrease

Stress

L-theanine

GABA_A Receptor

<table>
<thead>
<tr>
<th>Decrease</th>
<th>Stress</th>
<th>Anxiety</th>
</tr>
</thead>
</table>

- Serum Corticosterone?
- Catecholamine?
- Behavioral Changes? (EPM)
Literature Review

Research Design

- Prospective Experimental Between Groups Design
 1. Control (vehicle)
 2. L-theanine 10 mg/kg
 3. Midazolam 1.5 mg/kg
 4. Flumazenil 3 mg/kg + L-theanine 10 mg/kg
 5. Midazolam 1.5 mg/kg + L-theanine 10 mg/kg
Methodology

- Medication injected intraperitoneally 30 minutes prior to testing
- Test 5 minutes on the elevated plus maze (EPM)
- Data was collected via the MotorMonitor software
 Hamilton-Kinder
Instrumentation

- Elevated Plus Maze (EPM)
 - Valid and reliable instrument for anxiolytic studies using the rat model

Montgomery (1955), Pellow (1985)
Statistical Analysis

- Multivariate Analysis of Variance (MANOVA two-tailed)
- Sheffe Post Hoc Test
Methodology
Ratio Open Arm Time/Total Time

Mean Open Arm/Total Time +/- SEM

- Control
- Theanine
- Midazolam
- Flumazenil
- Midazolam + Theanine

* Indicates significant difference.
Discussion

- L-theanine and anxiolysis
- L-theanine and GABA$_A$ receptor
- L-theanine and midazolam
Future Study

- Explore L-theanine’s motor effects
- Establish the molecular mechanism of action and its potential effects in other neurotransmitter systems
- Determine significant clinical interactions of L-theanine
Acknowledgments

- Dr. Don Johnson, Research Program Director
- BAMC Department of Clinical Investigation
- Suzanne McCall, Research Assistant
Questions?